# ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

## **PARSOL®- Flat Glass**

### From 3 mm to 10 mm Body tinted glass

Version 2 Date of issue: 2021-12-17 Validity: 5 years Valid until: 2026-09-29

Scope of the EPD®: Europe

Version 1 Date of issue: 2016-09-15





The environmental impacts of this product have been assessed over its whole life cycle. Its Environmental Product Declaration has been verified by an independent third party.

Registration number The International EPD® System: S-P-00884 **EPD**<sup>®</sup>

THE INTERNATIONAL EPD® SYSTEM





### Table of content

| Table of content                                               | 1  |
|----------------------------------------------------------------|----|
| General information                                            | 2  |
| Product description                                            | 3  |
| Product description and description of use                     | 3  |
| Declaration of the main product components and/or materials    | 4  |
| LCA calculation information                                    | 5  |
| Life cycle stages                                              | 6  |
| Product stage, A1-A3                                           | 6  |
| Construction process stage, A4-A5                              | 8  |
| Use stage (excluding potential savings), B1-B7                 | 9  |
| End of Life Stage, C1-C4                                       | 9  |
| Reuse/recovery/recycling potential, D                          | 10 |
| LCA results                                                    | 11 |
| PARSOL 3 mm                                                    | 12 |
| PARSOL 4 mm                                                    | 15 |
| PARSOL 5 mm                                                    | 18 |
| PARSOL 6 mm                                                    | 21 |
| PARSOL 8 mm                                                    | 24 |
| PARSOL 10 mm                                                   | 27 |
| Information on biogenic carbon content                         | 30 |
| LCA results interpretation for PARSOL® 4 mm                    | 31 |
| Health characteristics                                         | 33 |
| Additional Environmental Information                           | 33 |
| Saint-Gobain's environmental policy                            | 33 |
| Our products' contribution to Sustainable Buildings            | 33 |
| Annex 1: Environmental impacts according to EN 15804:2012 + A1 | 35 |
| PARSOL 3 mm                                                    | 36 |
| PARSOL 4 mm                                                    | 37 |
| PARSOL 5 mm                                                    | 38 |
| PARSOL 6 mm                                                    | 39 |
| PARSOL 8 mm                                                    | 40 |
| PARSOL 10 mm                                                   | 41 |
| Bibliography                                                   | 42 |
| Differences versus previous versions                           | 42 |

### **General information**

**Manufacturer :** Saint-Gobain Glass FRANCE, 12 place de l'Iris, 92096 La Défense **Program used:** The International EPD® System. More information at www.environdec.com EPD registration/declaration number: S-P-00882

**PCR identification**: PCR 2019:14 Construction products (EN 15804:2012: A2) version 1.1 and its c-PCR-009 Flat glass products used in buildings and other construction works (EN17074:2019) **UN CPC code:** 371

Product name and manufacturer represented: PARSOL® produced by SAINT-GOBAIN GLASS INDUSTRY

Owner of the declaration: Saint-Gobain Glass Industry, Europe

**EPD® prepared by:** Yves Coquelet (Saint-Gobain) and Marie-Charlotte Harquet (Saint-Gobain) **Contact:** Amelie Briend - Amelie.briend@saint-gobain.com

Date of issue: 2021-12-17 Valid: 2026-09-29

| ISO standard ISO 21930 and CEN standard EN 15804 serves as the core Product<br>Category Rules (PCR): PCR 2019:14 Construction products, version 1.1 |                                                                                                                                                                            |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| EPD program operator                                                                                                                                | The International EPD <sup>®</sup> System.<br>Operated by EPD <sup>®</sup> International AB.<br>Box 210 60<br>SE-100 31 Stockholm<br>Sweden<br><u>www.environdec.com</u> . |  |  |  |  |
| PCR review conducted by                                                                                                                             | The Technical Committee of the International EPD® System Chair: Claudia A. Peña. Contact via info@environdec.com"                                                          |  |  |  |  |
| LCA and EPD performed by                                                                                                                            | y Saint-Gobain LCA central team                                                                                                                                            |  |  |  |  |
| Independent verification of the environmental declaration and data according to standard EN ISO 14025:2010                                          |                                                                                                                                                                            |  |  |  |  |
| Internal External External                                                                                                                          |                                                                                                                                                                            |  |  |  |  |
| Verifier<br>ELYS CONSEIL<br>Yannick LE GUERN<br>Email : yannick.leguern@elys-conseil.com                                                            |                                                                                                                                                                            |  |  |  |  |
| Accredited or approved by: The International EPD® System                                                                                            |                                                                                                                                                                            |  |  |  |  |
| Procedure for follow-up of data during EPD validity involves third party verifier:                                                                  |                                                                                                                                                                            |  |  |  |  |
| 🛛 Yes 🗆 No                                                                                                                                          |                                                                                                                                                                            |  |  |  |  |

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

Disclaimer: EPD of construction products may not be comparable if they do not comply with EN 15804

### **Product description**

#### Product description and description of use

This Environmental Product Declaration (EPD®) describes the environmental impacts of 1 m<sup>2</sup> of extra clear glass PARSOL® to 3 mm to 10 mm with a light transmittance of maximum 79%\*, for an expected average service life of 30 years.

\*Check table 1, below, with all the performance data according to the thickness

This EPD is represented of one site in Europe (France). There is only one site producing the flat glass PARSOL®.

PARSOL<sup>®</sup> is a body-tinted produced using the float procedure. There are 5 colors in the PARSOL range: green, bronze, grey, ultra grey, sapphire blue. PARSOL products are available in a range of thicknesses, from 3 mm to 10 mm, depending on the color. This glass is in conformity with the European Standard EN 572-2.

PARSOL® can be incorporated into a building, furniture or industrial application. The impacts of installation are not taken into account

#### Performance data

All the performance data are given according to the EN 410-2011 standard.

PARSOL Green

| Thickness (mm)                         | 3 | 4    | 5    | 6    | 8    | 10   |
|----------------------------------------|---|------|------|------|------|------|
| Visible parameters                     |   |      |      |      |      |      |
| Light transmittance (LT) %             |   | 78.6 | 7.6  | 72.8 | 67.5 | 62.7 |
| External light reflection (RLE)<br>(%) |   | 7.2  | 7.0  | 6.8  | 6.5  | 6.2  |
| Energetic parameters                   |   |      |      |      |      |      |
| Energy transmittance (ET) %            |   | 53.2 | 47.8 | 43.3 | 36.3 | 31.1 |
| Energy absorbance (EA) %               |   | 40.9 | 46.6 | 51.3 | 58.5 | 63.9 |
| Solar factor g                         |   | 0.63 | 0.59 | 0.55 | 0.50 | 0.46 |

#### PARSOL Bronze

| Thickness (mm)                         | 3    | 4    | 5    | 6    | 8    | 10   |
|----------------------------------------|------|------|------|------|------|------|
| Visible parameters                     |      |      |      |      |      |      |
| Light transmittance (LT) %             | 67.1 | 60.4 | 54.5 | 49.1 | 40.0 | 32.6 |
| External light reflection (RLE)<br>(%) | 6.4  | 6.0  | 5.7  | 5.5  | 5.1  | 4.8  |
| Energetic parameters                   |      |      |      |      |      |      |
| Energy transmittance (ET) %            | 66.7 | 60.4 | 54.5 | 49.1 | 40.0 | 32.6 |
| Energy absorbance (EA) %               | 27.0 | 33.9 | 40.0 | 45.5 | 54.7 | 62.2 |
| Solar factor g                         | 0.73 | 0.68 | 0.64 | 0.60 | 0.53 | 0.48 |

#### PARSOL Grey

| Thickness (mm)                         | 3    | 4    | 5    | 6    | 8    | 10   |
|----------------------------------------|------|------|------|------|------|------|
| Visible parameters                     |      |      |      |      |      |      |
| Light transmittance (LT) %             | 62.9 | 55.5 | 48.9 | 43.2 | 33.7 | 26.2 |
| External light reflection (RLE)<br>(%) | 6.2  | 5.8  | 5.5  | 5.2  | 4.9  | 4.7  |
| Energetic parameters                   |      |      |      |      |      |      |
| Energy transmittance (ET) %            | 64.0 | 57.1 | 50.9 | 45.5 | 36.4 | 29.2 |
| Energy absorbance (EA) %               | 29.8 | 37.1 | 43.6 | 49.2 | 58.7 | 66.1 |
| Solar factor g                         | 0.71 | 0.66 | 0.61 | 0.57 | 0.50 | 0.45 |

#### PARSOL Ultra Grey

| Thickness (mm)                         | 3 | 4    | 5 | 6    | 8    | 10   |
|----------------------------------------|---|------|---|------|------|------|
| Visible parameters                     |   |      |   |      |      |      |
| Light transmittance (LT) %             |   | 9.6  |   | 3.2  | 1.0  | 0.3  |
| External light reflection (RLE)<br>(%) |   | 4.4  |   | 4.3  | 4.3  | 4.3  |
| Energetic parameters                   |   |      |   |      |      |      |
| Energy transmittance (ET) %            |   | 7.9  |   | 2.6  | 0.9  | 0.3  |
| Energy absorbance (EA) %               |   | 87.8 |   | 93.1 | 94.8 | 95.4 |
| Solar factor g                         |   | 0.29 |   | 0.26 | 0.23 | 0.23 |

#### PARSOL Sapphire Blue

| Thickness (mm)                         | 3 | 4    | 5 | 6    | 8 | 10 |
|----------------------------------------|---|------|---|------|---|----|
| Visible parameters                     |   |      |   |      |   |    |
| Light transmittance (LT) %             |   | 66.3 |   | 56.6 |   |    |
| External light reflection (RLE)<br>(%) |   | 6.4  |   | 5.9  |   |    |
| Energetic parameters                   |   |      |   |      |   |    |
| Energy transmittance (ET) %            |   | 53.3 |   | 42.1 |   |    |
| Energy absorbance (EA) %               |   | 41.0 |   | 52.6 |   |    |
| Solar factor g                         |   | 0.63 |   | 0.55 |   |    |

### Declaration of the main product components and/or materials

The product is 100% glass CAS number 65997-17-3, EINECS number 266-046-0.

Description of the main components and/or materials for  $1 \text{ m}^2$  of extra clear glass PARSOL® to 2 mm to 10 mm with a light transmittance of maximum 79%.

| Thickness (mm)                                            | 3   | 4  | 5    | 6  | 8  | 10 |
|-----------------------------------------------------------|-----|----|------|----|----|----|
| Quantity of glass for<br>1 m <sup>2</sup> of product (kg) | 7,5 | 10 | 12,5 | 15 | 20 | 25 |

There is no "Substance of Very High Concern" (SVHC) in concentration above 0.1% by weight, and neither do their packaging, following the European REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals).

#### Packaging and product used : None

### LCA calculation information

| FUNCTIONAL UNIT / DECLARED UNIT          | 1 m <sup>2</sup> of extra clear glass PARSOL® to 3 mm to<br>10 mm with a light transmittance of maximum<br>79%*, for an expected average service life of 30<br>years.                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYSTEM BOUNDARIES                        | Cradle to grave and module D<br>Mandatory Stages = A1-A3 ; B1-B7 ; C1-C4 and<br>D                                                                                                                                                                                                                                                                                                                                                                                                                   |
| REFERENCE SERVICE LIFE (RSL)             | According to PCR EN 17074:2019, the reference service life is 30 years                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CUT-OFF RULES                            | All significant parameters shall be included.<br>According to EN 15804, mass flows under 1% of<br>the total mass input; and/or energy flows<br>representing less than 1% of the total primary<br>energy usage of the associated unit process<br>may be omitted. However, the total amount of<br>energy and mass omitted must not exceed 5%<br>per module.<br>The energy used for the installation of 1m <sup>2</sup> of<br>glass and the transport glass racks are included<br>in the cut-off-rules |
| ALLOCATIONS                              | Allocations are done on mass basis (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GEOGRAPHICAL COVERAGE<br>AND TIME PERIOD | The information was established over the year 2019.<br>The information collected comes from the European sites producing PARSOL® (SAINT-GOBAIN GLASS INDUSTRY)                                                                                                                                                                                                                                                                                                                                      |
| BACKGROUND DATA SOURCE                   | GaBi data were used to evaluate the<br>environmental impacts. The data are<br>representative of the years 2015-2019.                                                                                                                                                                                                                                                                                                                                                                                |
| SOFTWARE                                 | Gabi 9.2.0 - GaBi envision                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

According to EN 15804, EPD of construction products may not be comparable if they do not comply with this standard. According to ISO 21930, EPD might not be comparable if they are from different programmes.

### Life cycle stages

### Flow diagram of the Life Cycle



### Product stage, A1-A3

For flat glass A1 to A3 represents the production of glass in the float from cradle to gate.

Description of the stage: the product stage of flat glass is subdivided into 3 modules A1, A2 and A3 respectively "Raw material supply", "transport to manufacturer" and "manufacturing".

#### A1, raw material supply.

This includes the extraction and processing of all raw materials and energy which occur upstream from the manufacturing process.

#### A2, transport to the manufacturer.

The raw materials are transported to the manufacturing site. The modelling includes road, boat and/or train transportations of each raw material.

#### A3, manufacturing.

This module includes the manufacture of products and the manufacture of packaging. The production of packaging material is taken into account at this stage. The processing of any waste arising from this stage is also included.

The product stage includes the extraction and processing of raw materials and energies, transport to the manufacturer, manufacturing and processing of flat glass.



- 1. **BATCH MIXER:** Mix of raw materials (silica, soda ash, lime, feldspar and dolomite) to which is added recycled glass (cullet) and other compounds depending on the desired color and properties.
- 2. **FUSION FURNACE:** Raw materials are melted at 1,550°C in a furnace.
- 3. **FLOAT:** The molten glass is fed into a bath of molten tin. The glass floats on this flat surface and is drawn off in a ribbon. Serrated wheels, or top rolls, pull and push the glass sideways depending on the desired thickness (from 3 to 10 millimeters).
- 4. **ANNEALING LEHR:** The glass is lifted onto conveyor rollers and passes through a controlled cooling tunnel measuring more than 100 meters in length. Approximately 600°C at the start of this step, the glass exits the lehr at room temperature.
- 5. **CUTTING AND STACKING:** The glass is automatically cut lengthwise and crosswise. The sheets of glass are raised by vacuum frames that then place them on glass stillages.
- 6. **QUALITY:** Automatic inspections and regular samples are taken to check the quality of the glass at each step in the glassmaking process.
- 7. **STORAGE AND TRANSPORTATION:** The stillages are placed on storage racks in the warehouse.
- 8. **ENVIRONMENT:** Use of recycled cullet, installation of pollution abatement systems and closed circuit management of water: every measure is taken to limit the consumption of energy, extraction of natural resources, production of waste and emissions into the atmosphere.

The flat glass is transported on dedicated racks, used many times. This racks are not included in the life cycle of the product.

### Construction process stage, A4-A5

**Description of the stage**: The construction process is divided into 2 modules: A4, transport to the building site and A5, installation in the building.

A4, Transport to the building site:

This module includes transport from the production gate to the building site. Transport is calculated on the basis of a scenario with the parameters described in the following table.

| PARAMETER                                                                                                    | VALUE/DESCRIPTION                                                                 |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Fuel type and consumption of vehicle or vehicle type used for transport e.g. long distance truck, boat, etc. | Average truck trailer with a 27t payload, diesel consumption 38 liters for 100 km |
| Distance                                                                                                     | 2000 km                                                                           |
| Capacity utilisation (including empty returns)                                                               | 100% of the capacity in volume<br>30 % of empty returns in mass                   |
| Bulk density of transported products*                                                                        | 2500 kg/m3                                                                        |
| Volume capacity utilisation factor                                                                           | < 1                                                                               |

### A5, Installation in the building:

The accompanying table quantifies the parameters for installing the product at the building site. All installation materials and their waste processing are included.

| PARAMETER                                                                                                                                                                                | VALUE                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ancillary materials for installation (specified by materials)                                                                                                                            | According to PCR NF EN 17074, none ancillary materials considered                                                                                        |
| Other resource use                                                                                                                                                                       | None                                                                                                                                                     |
| Quantitative description of energy type (regional mix) and consumption during the installation process                                                                                   | According to EN 15804+A1, the energy needed during the installation is less than 0,1% of the total life cycle energy. It's include in the cut-off-rules. |
| Wastage of materials on the building site before<br>waste processing, generated by the product's<br>installation (specified by type)                                                     | According to PCR EN 17074, no waste is considered.                                                                                                       |
| Output materials (specified by type) as results of<br>waste processing at the building site e.g. of collection<br>for recycling, for energy recovering, disposal<br>(specified by route) | None                                                                                                                                                     |
| Direct emissions to ambient air, soil and water                                                                                                                                          | None                                                                                                                                                     |

Description of the stage: The use stage is divided into the following modules:

- B1: Use
- **B2: Maintenance**
- B3: Repair
- B4: Replacement
- B5: Refurbishment
- B6: Operational energy use
- **B7: Operational water use**

The product has a reference service life of 30 years. This assumes that the product will last in situ with no requirements for repair, replacement or refurbishment throughout this period. Therefore, it has no impact at this stage, except for maintenance.

According to PCR EN 17074, only the maintenance by cleaning glass with water and cleaning agent is included in this study.

#### Maintenance parameters, B2 :

| PARAMETER                                                                                                                                       | VALUE (expressed per functional/declared unit)         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Maintenance process                                                                                                                             | Water and cleaning agent                               |
| Maintenance cycle                                                                                                                               | Annual average                                         |
| Ancillary materials for maintenance (e.g. cleaning agent, specify materials)                                                                    | cleaning agent : 0,001 kg/m <sup>2</sup> of glass/year |
| Wastage material during maintenance (specify materials)                                                                                         | 0 kg                                                   |
| Net fresh water consumption during maintenance                                                                                                  | 0,2 kg/m <sup>2</sup> of glass/year                    |
| Energy input during maintenance<br>(e.g. vacuum cleaning), energy carrier type, (e.g.<br>electricity) and amount, if applicable<br>and relevant | None required during product lifetime                  |

### End of Life Stage, C1-C4

Description of the stage: This stage includes the next modules:

- C1: Deconstruction, demolition
- C2: Transport to waste processing
- C3: Waste processing for reuse, recovery and/or recycling
- C4: Disposal

End of life scenario used in this study is:

100% of glass is landfilled and the distance to the landfill site considered is 50 km.

Description of the scenarios and additional technical information:

| End of Inc.                             |   |     |    |      |    |    |    |    |      |      |
|-----------------------------------------|---|-----|----|------|----|----|----|----|------|------|
| Thickness (mm)                          | 2 | 3   | 4  | 5    | 6  | 8  | 10 | 12 | 15   | 19   |
| Collection process<br>specified by type | 5 | 7,5 | 10 | 12,5 | 15 | 20 | 25 | 30 | 37,5 | 47,5 |
| Recovery system<br>specified by type    | 0 | 0   | 0  | 0    | 0  | 0  | 0  | 0  | 0    | 0    |
| Disposal specified by type              | 5 | 7,5 | 10 | 12,5 | 15 | 20 | 25 | 30 | 37,5 | 47,5 |

### End of life:

Assumptions for scenario development (e.g. transportation): 50 km transport to landfill

### Reuse/recovery/recycling potential, D

Description of the stage: An end of life recycling 0% (100% of glass wastes are landfilled) has been assumed using local demolition waste data and adjusted considering the recyclability of the product.

### LCA results

Product Environmental Footprint (PEF) method has been used as the impact model. Specific data has been supplied by the plant, and generic data come from GABI and Ecoinvent databases.

All emissions to air, water, and soil, and all materials and energy used have been included.

Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant (Production data according 2019)

All result tables refer to a functional unit of 1 m<sup>2</sup> of flat glass and an expected average service life of 30 years.

|                       |                     | ODU<br>TAGI |               | CONSTR<br>STA |                                      |     |             | USE    | E STA       | GE            |                        |                       | E                          | ND OI<br>STA |                  | E        | BENEFITS<br>AND<br>LOADS<br>BEYOND<br>THE<br>SYSTEM<br>BOUNDARY |
|-----------------------|---------------------|-------------|---------------|---------------|--------------------------------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|--------------|------------------|----------|-----------------------------------------------------------------|
|                       | Raw material supply | Transport   | Manufacturing | Transport     | Construction-Installation<br>process | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport    | Waste processing | Disposal | Reuse-recovery                                                  |
| Module                | A1                  | A2          | A3            | A4            | A5                                   | B1  | B2          | В3     | Β4          | B5            | B6                     | Β7                    | C1                         | C2           | C3               | C4       | D                                                               |
| Module<br>declared    | Х                   | Х           | Х             | х             | Х                                    | Х   | Х           | Х      | Х           | Х             | Х                      | Х                     | Х                          | Х            | Х                | Х        | х                                                               |
| Geography             |                     |             |               |               |                                      |     |             | I      | EU-27       |               |                        |                       |                            |              |                  |          |                                                                 |
| Specific<br>data used |                     |             |               | <90%          |                                      | -   | -           | -      | -           | -             | -                      | -                     | -                          | -            | -                | -        | -                                                               |
| Variation products    |                     |             | Not           | t relevant    |                                      | -   | -           | -      | -           | -             | -                      | -                     | -                          | -            | -                | -        | -                                                               |
| Variation<br>sites    |                     |             | Not           | t relevant    |                                      | -   | -           | -      | -           | -             | -                      | -                     | -                          | -            | -                | -        | -                                                               |

PARSOL 3 mm

|            |                                                              |                  |                       |                 | ENVIRONMI | ENTAL IMF         | PACTS     | 3 mm              | า                   |                              |                             |                                      |              |                        |             |                                 |
|------------|--------------------------------------------------------------|------------------|-----------------------|-----------------|-----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|            |                                                              | Product<br>stage | Construc<br>process s |                 |           |                   | Use s     | tage              |                     |                              |                             |                                      | End-of-l     | ife stage              |             | ery,                            |
|            | Parameters                                                   | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use    | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| 3          | Climate Change [kg CO2 eq.]                                  | 7,17E+00         | 7,32E-01              | 0               | 0         | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,83E-02     | 0                      | 1,05E-01    | 0                               |
| 3          | Climate Change (fossil) [kg CO2 eq.]                         | 6,81E+00         | 7,27E-01              | 0               | 0         | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,82E-02     | 0                      | 1,14E-01    | 0                               |
| ٩          | Climate Change (biogenic) [kg CO2 eq.]                       | 3,57E-01         | 0                     | 0               | 0         | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| ٣          | Climate Change (land use change) [kg<br>CO2 eq.]             | 2,69E-03         | 5,96E-03              | 0               | 0         | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,49E-04     | 0                      | 3,27E-04    | 0                               |
| $\bigcirc$ | Ozone depletion [kg CFC-11 eq.]                              | 7,65E-10         | 8,84E-17              | 0               | 0         | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,21E-18     | 0                      | 4,22E-16    | 0                               |
| 3          | Acidification terrestrial and freshwater<br>[Mole of H+ eq.] | 2,76E-02         | 3,12E-03              | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 7,81E-05     | 0                      | 8,16E-04    | 0                               |
|            | Eutrophication freshwater [kg P eq.]                         | 1,22E-05         | 2,24E-06              | 0               | 0         | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,59E-08     | 0                      | 1,95E-07    | 0                               |
|            | Eutrophication marine [kg N eq.]                             | 5,37E-03         | 1,47E-03              | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,66E-05     | 0                      | 2,10E-04    | 0                               |
|            | Eutrophication terrestrial [Mole of N eq.]                   | 7,44E-02         | 1,63E-02              | 0               | 0         | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,07E-04     | 0                      | 2,31E-03    | 0                               |
| B          | Photochemical ozone formation - human health [kg NMVOC eq.]  | 1,35E-02         | 3,94E-03              | 0               | 0         | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 9,85E-05     | 0                      | 6,36E-04    | 0                               |
| <b>G</b>   | Resource use, mineral and metals<br>[kg Sb eq.]              | 5,67E-07         | 5,27E-08              | 0               | 0         | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,32E-09     | 0                      | 1,02E-08    | 0                               |
| 3          | Resource use, energy carriers [MJ]                           | 1,12E+02         | 9,79E+00              | 0               | 0         | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,45E-01     | 0                      | 1,49E+00    | 0                               |
|            | Water scarcity [m <sup>3</sup> world equiv.]                 | 4,50E-01         | 6,57E-03              | 0               | 0         | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,64E-04     | 0                      | 1,19E-02    | 0                               |

SAINT-GOBAIN - EPD verified - PARSOL® - Page 12

|           |                                                                                    |                  |                       |                 | F      | RESOURCE U        | ISE 3 n   | าฑ                |                     |                              |                             |                                      |              |                        |             |                                 |
|-----------|------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|           |                                                                                    | Product<br>stage | Construction<br>stage |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-I     | ife stage              |             | èry,                            |
|           | Parameters                                                                         | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| <b>(*</b> | Use of renewable primary<br>energy (PERE) [MJ]                                     | 3,58E+00         | 5,50E-01              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,38E-02     | 0                      | 1,95E-01    | 0                               |
| <b>(*</b> | Primary energy resources<br>used as raw materials<br>(PERM) [MJ]                   | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | otal use of renewable primary<br>nergy resources (PERT) [MJ]                       | 3,58E+00         | 5,50E-01              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,38E-02     | 0                      | 1,95E-01    | 0                               |
|           | Use of non-renewable<br>primary energy (PENRE)<br>[MJ]                             | 1,12E+02         | 9,80E+00              | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,45E-01     | 0                      | 1,49E+00    | 0                               |
| 0         | Non-renewable primary<br>energy resources used as<br>raw materials (PENRM)<br>[MJ] | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | Total use of non-renewable<br>primary energy resources<br>(PENRT) [MJ]             | 1,12E+02         | 9,80E+00              | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,45E-01     | 0                      | 1,49E+00    | 0                               |
| 6         | Input of secondary material<br>(SM) [kg]                                           | 1,19E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of renewable secondary<br>fuels (RSF) [MJ]                                     | 1,58E-21         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of non-renewable secondary fuels (NRSF) [MJ]                                   | 1,85E-20         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 0         | Use of net fresh water (FW)<br>[m3]                                                | 1,52E-02         | 6,37E-04              | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,59E-05     | 0                      | 3,76E-04    | 0                               |

|   |                                             |                  |                         |                 |        | WASTE CA          | TEGOR     | IES 3 mm          | າ                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-lif   | e stage                |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
|   | Hazardous waste disposed<br>(HWD) [kg]      | 1,85E-07         | 4,56E-07                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,14E-08     | 0                      | 2,28E-08    | 0                               |
| Ø | Non-hazardous waste<br>disposed (NHWD) [kg] | 4,30E-01         | 1,50E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,75E-05     | 0                      | 7,51E+00    | 0                               |
| Ū | Radioactive waste disposed<br>(RWD) [kg]    | 6,20E-03         | 1,21E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,03E-07     | 0                      | 1,70E-05    | 0                               |

|                                            |                  |              |                    |        | OUTPL             | JT FLOW   | S 3 mm            |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|--------------|--------------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage |              | ruction<br>s stage |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-l     | ife stage              |             | ery,                            |
| Parameters                                 |                  | A4 Transport | A5 Installation    | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Materials for Recycling<br>(MFR) [kg]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy Recovery<br>(MER) [kg] | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy<br>(EEE) [MJ]   | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported thermal energy<br>(EET) [MJ]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

SAINT-GOBAIN - EPD verified - PARSOL® - Page 14

PARSOL 4 mm

|            |                                                                |                  |                       | E               | NVIRONME | NTAL IMPA         | CTS 4     | mm                |                     |                              |                             |                                      |              |                        |             |                                 |
|------------|----------------------------------------------------------------|------------------|-----------------------|-----------------|----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|            |                                                                | Product<br>stage | Construc<br>process s |                 |          |                   | Use s     | stage             |                     |                              |                             |                                      | End-of-life  | e stage                |             | ery,                            |
|            | Parameters                                                     | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use   | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| 3          | Climate Change [kg CO2 eq.]                                    | 9,56E+00         | 9,76E-01              | 0               | 0        | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,44E-02     | 0                      | 1,40E-01    | 0                               |
| 3          | Climate Change (fossil) [kg CO2 eq.]                           | 9,08E+00         | 9,70E-01              | 0               | 0        | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,42E-02     | 0                      | 1,52E-01    | 0                               |
| ٩          | Climate Change (biogenic) [kg CO2 eq.]                         | 4,76E-01         | 0                     | 0               | 0        | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 3          | Climate Change (land use change) [kg<br>CO2 eq.]               | 3,58E-03         | 7,94E-03              | 0               | 0        | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,99E-04     | 0                      | 4,37E-04    | 0                               |
| $\bigcirc$ | Ozone depletion [kg CFC-11 eq.]                                | 1,02E-09         | 1,18E-16              | 0               | 0        | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,95E-18     | 0                      | 5,62E-16    | 0                               |
| 3          | Acidification terrestrial and freshwater<br>[Mole of H+ eq.]   | 3,68E-02         | 4,16E-03              | 0               | 0        | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,04E-04     | 0                      | 1,09E-03    | 0                               |
|            | Eutrophication freshwater [kg P eq.]                           | 1,62E-05         | 2,98E-06              | 0               | 0        | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 7,45E-08     | 0                      | 2,60E-07    | 0                               |
|            | Eutrophication marine [kg N eq.]                               | 7,16E-03         | 1,95E-03              | 0               | 0        | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,88E-05     | 0                      | 2,80E-04    | 0                               |
|            | Eutrophication terrestrial [Mole of N eq.]                     | 9,92E-02         | 2,17E-02              | 0               | 0        | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,43E-04     | 0                      | 3,08E-03    | 0                               |
| B          | Photochemical ozone formation - human<br>health [kg NMVOC eq.] | 1,80E-02         | 5,25E-03              | 0               | 0        | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,31E-04     | 0                      | 8,48E-04    | 0                               |
| <b>G</b>   | Resource use, mineral and metals<br>[kg Sb eq.]                | 7,56E-07         | 7,03E-08              | 0               | 0        | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,76E-09     | 0                      | 1,36E-08    | 0                               |
| <b>G</b>   | Resource use, energy carriers [MJ]                             | 1,50E+02         | 1,31E+01              | 0               | 0        | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,26E-01     | 0                      | 1,99E+00    | 0                               |
|            | Water scarcity [m <sup>3</sup> world equiv.]                   | 6,00E-01         | 8,77E-03              | 0               | 0        | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,19E-04     | 0                      | 1,59E-02    | 0                               |

|           |                                                                                    |                  |                       |                 | F      | RESOURCE U        | SE 4 n    | าฑ                |                     |                              |                             |                                      |              |                        |             |                                 |
|-----------|------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|           |                                                                                    | Product<br>stage | Construction<br>stage |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-      | ife stage              |             | əry,                            |
|           | Parameters                                                                         | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| <b>(*</b> | Use of renewable primary<br>energy (PERE) [MJ]                                     | 4,78E+00         | 7,34E-01              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,83E-02     | 0                      | 2,61E-01    | 0                               |
| <b>(*</b> | Primary energy resources<br>used as raw materials<br>(PERM) [MJ]                   | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | otal use of renewable primary<br>nergy resources (PERT) [MJ]                       | 4,78E+00         | 7,34E-01              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,83E-02     | 0                      | 2,61E-01    | 0                               |
|           | Use of non-renewable<br>primary energy (PENRE)<br>[MJ]                             | 1,50E+02         | 1,31E+01              | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,27E-01     | 0                      | 1,99E+00    | 0                               |
| 0         | Non-renewable primary<br>energy resources used as<br>raw materials (PENRM)<br>[MJ] | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | Total use of non-renewable<br>primary energy resources<br>(PENRT) [MJ]             | 1,50E+02         | 1,31E+01              | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,27E-01     | 0                      | 1,99E+00    | 0                               |
| 6         | Input of secondary material<br>(SM) [kg]                                           | 1,59E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of renewable secondary fuels (RSF) [MJ]                                        | 2,1E-21          | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| <b>S</b>  | Use of non-renewable secondary fuels (NRSF) [MJ]                                   | 2,47E-20         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 0         | Use of net fresh water (FW)<br>[m3]                                                | 2,03E-02         | 8,50E-04              | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,12E-05     | 0                      | 5,02E-04    | 0                               |

|   |                                             |                  |                         |                 |        | WASTE CA          | TEGOR     | IES 4 mm          | ı                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 | ,      |                   |           | Use stage         |                     |                              |                             |                                      | End-of-lif   | e stage                |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| đ | Hazardous waste disposed<br>(HWD) [kg]      | 2,47E-07         | 6,08E-07                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,52E-08     | 0                      | 3,03E-08    | 0                               |
| Ø | Non-hazardous waste<br>disposed (NHWD) [kg] | 5,73E-01         | 2,00E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,00E-05     | 0                      | 1,00E+01    | 0                               |
| Ū | Radioactive waste disposed<br>(RWD) [kg]    | 8,26E-03         | 1,62E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,04E-07     | 0                      | 2,26E-05    | 0                               |

|                                            |                  |                     |                 |        | OUTPL             | JT FLOW   | S 4 mm            |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|---------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage | Constructio<br>stag |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-l     | ife stage              |             | ery,                            |
| Parameters                                 |                  | A4 Transport        | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0                   | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Materials for Recycling<br>(MFR) [kg]      | 0                | 0                   | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy<br>Recovery (MER) [kg] | 0                | 0                   | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy (EEE) [MJ]      | 0                | 0                   | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

PARSOL 5 mm

|            |                                                                |                  |                         | E               | NVIRONMEN | NTAL IMPA         | CTS 5     | mm                |                     |                              |                             |                                      |              |                        |             |                                 |
|------------|----------------------------------------------------------------|------------------|-------------------------|-----------------|-----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|            |                                                                | Product<br>stage | Construct<br>process st |                 |           |                   | Use s     | stage             |                     |                              |                             |                                      | End-of-life  | e stage                |             | ery,                            |
|            | Parameters                                                     |                  | A4 Transport            | A5 Installation | B1 Use    | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| 3          | Climate Change [kg CO2 eq.]                                    | 1,19E+01         | 1,22E+00                | 0               | 0         | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,05E-02     | 0                      | 1,75E-01    | 0                               |
| 3          | Climate Change (fossil) [kg CO2 eq.]                           | 1,13E+01         | 1,21E+00                | 0               | 0         | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,03E-02     | 0                      | 1,90E-01    | 0                               |
| ٩          | Climate Change (biogenic) [kg CO2 eq.]                         | 5,96E-01         | 0                       | 0               | 0         | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 3          | Climate Change (land use change) [kg<br>CO2 eq.]               | 4,48E-03         | 9,93E-03                | 0               | 0         | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,48E-04     | 0                      | 5,46E-04    | 0                               |
| $\bigcirc$ | Ozone depletion [kg CFC-11 eq.]                                | 1,27E-09         | 1,47E-16                | 0               | 0         | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,68E-18     | 0                      | 7,03E-16    | 0                               |
| 6          | Acidification terrestrial and freshwater<br>[Mole of H+ eq.]   | 4,60E-02         | 5,20E-03                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,30E-04     | 0                      | 1,36E-03    | 0                               |
|            | Eutrophication freshwater [kg P eq.]                           | 2,03E-05         | 3,73E-06                | 0               | 0         | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 9,32E-08     | 0                      | 3,26E-07    | 0                               |
|            | Eutrophication marine [kg N eq.]                               | 8,95E-03         | 2,44E-03                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,10E-05     | 0                      | 3,50E-04    | 0                               |
|            | Eutrophication terrestrial [Mole of N eq.]                     | 1,24E-01         | 2,71E-02                | 0               | 0         | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,78E-04     | 0                      | 3,85E-03    | 0                               |
| B          | Photochemical ozone formation - human<br>health [kg NMVOC eq.] | 2,25E-02         | 6,56E-03                | 0               | 0         | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,64E-04     | 0                      | 1,06E-03    | 0                               |
| <b>G</b>   | Resource use, mineral and metals<br>[kg Sb eq.]                | 9,44E-07         | 8,79E-08                | 0               | 0         | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,20E-09     | 0                      | 1,70E-08    | 0                               |
| <b>G</b> , | Resource use, energy carriers [MJ]                             | 1,87E+02         | 1,63E+01                | 0               | 0         | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,08E-01     | 0                      | 2,49E+00    | 0                               |
|            | Water scarcity [m <sup>3</sup> world equiv.]                   | 7,50E-01         | 1,10E-02                | 0               | 0         | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,74E-04     | 0                      | 1,99E-02    | 0                               |

|                                                                            |                  |                    |                 | F      | RESOURCE          | USE 5 mm  | า                 |                     |                              |                             |                                      |              |                        |             |                                 |
|----------------------------------------------------------------------------|------------------|--------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                                                            | Product<br>stage | Constructio<br>sta |                 |        |                   | Use st    | tage              |                     |                              |                             |                                      | End-of-li    | fe stage               |             | ery,                            |
| Parameters                                                                 |                  | A4 Transport       | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Use of renewable primary<br>energy (PERE) [MJ]                             | 5,97E+00         | 9,17E-01           | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,29E-02     | 0                      | 3,26E-01    | 0                               |
| Primary energy resources<br>used as raw materials<br>(PERM) [MJ]           | 0,00E+00         | 0                  | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Total use of renewable primary energy resources (PERT) [MJ]                | 5,97E+00         | 9,17E-01           | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,29E-02     | 0                      | 3,26E-01    | 0                               |
| Use of non-renewable<br>primary energy (PENRE)<br>[MJ]                     | 1,87E+02         | 1,63E+01           | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,08E-01     | 0                      | 2,49E+00    | 0                               |
| Non-renewable primary<br>energy resources used as<br>raw materials (PENRM) | 0,00E+00         | 0                  | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Total use of non-renewable primary<br>energy resources (PENRT) [MJ]        | 1,87E+02         | 1,63E+01           | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,08E-01     | 0                      | 2,49E+00    | 0                               |
| Input of secondary material<br>(SM) [kg]                                   | 1,99E+00         | 0                  | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Use of renewable secondary<br>fuels (RSF) [MJ]                             | 2,63E-21         | 0                  | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Use of non-renewable secondary fuels (NRSF) [MJ]                           | 3,09E-20         | 0                  | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Use of net fresh water (FW)<br>[m3]                                        | 2,54E-02         | 1,06E-03           | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,66E-05     | 0                      | 6,27E-04    | 0                               |

|   |                                             |                  |                         |                 |        | WASTE CA          | TEGOR     | RIES 5 mm         | າ                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-lif   | e stage                |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| đ | Hazardous waste disposed<br>(HWD) [kg]      | 3,09E-07         | 7,60E-07                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,90E-08     | 0                      | 3,79E-08    | 0                               |
| Ø | Non-hazardous waste<br>disposed (NHWD) [kg] | 7,16E-01         | 2,50E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,25E-05     | 0                      | 1,25E+01    | 0                               |
| Ū | Radioactive waste disposed<br>(RWD) [kg]    | 1,03E-02         | 2,02E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,06E-07     | 0                      | 2,83E-05    | 0                               |

|                                            |                  |              |                    |        | OUTPL             | JT FLOW   | S 5 mm            |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|--------------|--------------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage |              | ruction<br>s stage |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-      | ife stage              |             | ery,                            |
| Parameters                                 | A1 / A2 / A3     | A4 Transport | A5 Installation    | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| (MFR) [kg]                                 | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy Recovery<br>(MER) [kg] | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy (EEE) [MJ]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported thermal energy<br>(EET) [MJ]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

PARSOL 6 mm

|            |                                                                |                  |                         | E               | NVIRONME | NTAL IMPA         | CTS 6     | mm                |                     |                              |                             |                                      |              |                        |             |                                 |
|------------|----------------------------------------------------------------|------------------|-------------------------|-----------------|----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|            |                                                                | Product<br>stage | Construct<br>process st |                 |          |                   | Uses      | stage             |                     |                              |                             |                                      | End-of-life  | e stage                |             | ery,                            |
|            | Parameters                                                     | A1 / A2 / A3     | A4 Transport            | A5 Installation | B1 Use   | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| 3          | Climate Change [kg CO2 eq.]                                    | 1,43E+01         | 1,46E+00                | 0               | 0        | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,66E-02     | 0                      | 2,10E-01    | 0                               |
| (*)        | Climate Change (fossil) [kg CO2 eq.]                           | 1,36E+01         | 1,45E+00                | 0               | 0        | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,64E-02     | 0                      | 2,28E-01    | 0                               |
| ٩          | Climate Change (biogenic) [kg CO2 eq.]                         | 7,15E-01         | 0                       | 0               | 0        | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 3          | Climate Change (land use change) [kg<br>CO2 eq.]               | 5,38E-03         | 1,19E-02                | 0               | 0        | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,98E-04     | 0                      | 6,55E-04    | 0                               |
| $\bigcirc$ | Ozone depletion [kg CFC-11 eq.]                                | 1,53E-09         | 1,77E-16                | 0               | 0        | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,42E-18     | 0                      | 8,43E-16    | 0                               |
| 3          | Acidification terrestrial and freshwater<br>[Mole of H+ eq.]   | 5,52E-02         | 6,24E-03                | 0               | 0        | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,56E-04     | 0                      | 1,63E-03    | 0                               |
|            | Eutrophication freshwater [kg P eq.]                           | 2,43E-05         | 4,47E-06                | 0               | 0        | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,12E-07     | 0                      | 3,91E-07    | 0                               |
|            | Eutrophication marine [kg N eq.]                               | 1,07E-02         | 2,93E-03                | 0               | 0        | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 7,33E-05     | 0                      | 4,20E-04    | 0                               |
|            | Eutrophication terrestrial [Mole of N eq.]                     | 1,49E-01         | 3,26E-02                | 0               | 0        | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 8,14E-04     | 0                      | 4,62E-03    | 0                               |
| B          | Photochemical ozone formation - human<br>health [kg NMVOC eq.] | 2,70E-02         | 7,88E-03                | 0               | 0        | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,97E-04     | 0                      | 1,27E-03    | 0                               |
| <b>G</b>   | Resource use, mineral and metals<br>[kg Sb eq.]                | 1,13E-06         | 1,05E-07                | 0               | 0        | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,64E-09     | 0                      | 2,04E-08    | 0                               |
| <b>G</b>   | Resource use, energy carriers [MJ]                             | 2,25E+02         | 1,96E+01                | 0               | 0        | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,90E-01     | 0                      | 2,98E+00    | 0                               |
|            | Water scarcity [m <sup>3</sup> world equiv.]                   | 9,00E-01         | 1,31E-02                | 0               | 0        | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,29E-04     | 0                      | 2,38E-02    | 0                               |

|           |                                                                                    |                  |                       |                 | F      | RESOURCE U        | SE 6 n    | าฑ                |                     |                              |                             |                                      |              |                        |             |                                 |
|-----------|------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|           |                                                                                    | Product<br>stage | Construction<br>stage |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-      | ife stage              |             | əry,                            |
|           | Parameters                                                                         | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| <b>(*</b> | Use of renewable primary<br>energy (PERE) [MJ]                                     | 7,17E+00         | 1,10E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,75E-02     | 0                      | 3,91E-01    | 0                               |
| <b>(*</b> | Primary energy resources<br>used as raw materials<br>(PERM) [MJ]                   | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | otal use of renewable primary<br>nergy resources (PERT) [MJ]                       | 7,17E+00         | 1,10E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,75E-02     | 0                      | 3,91E-01    | 0                               |
| L         | lse of non-renewable primary<br>energy (PENRE) [MJ]                                | 2,25E+02         | 1,96E+01              | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,90E-01     | 0                      | 2,99E+00    | 0                               |
| 0         | Non-renewable primary<br>energy resources used as<br>raw materials (PENRM)<br>[MJ] | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | Total use of non-renewable<br>primary energy resources<br>(PENRT) [MJ]             | 2,25E+02         | 1,96E+01              | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,90E-01     | 0                      | 2,99E+00    | 0                               |
| 6         | Input of secondary material<br>(SM) [kg]                                           | 2,39E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of renewable secondary fuels (RSF) [MJ]                                        | 3,16E-21         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| <b>S</b>  | Use of non-renewable secondary fuels (NRSF) [MJ]                                   | 3,71E-20         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 0         | Use of net fresh water (FW)<br>[m3]                                                | 3,04E-02         | 1,27E-03              | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,19E-05     | 0                      | 7,53E-04    | 0                               |

|   |                                             |                  |                         |                 |        | WASTE CA          | TEGOR     | IES 6 mm          | ı                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-li    | fe stage               |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| đ | Hazardous waste disposed<br>(HWD) [kg]      | 3,71E-07         | 9,12E-07                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,28E-08     | 0                      | 4,55E-08    | 0                               |
| J | Non-hazardous waste<br>disposed (NHWD) [kg] | 8,60E-01         | 3,00E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 7,50E-05     | 0                      | 1,50E+01    | 0                               |
| Ū | Radioactive waste disposed<br>(RWD) [kg]    | 1,24E-02         | 2,43E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,07E-07     | 0                      | 3,39E-05    | 0                               |

|                                            |                  |              |                    |        | OUTPL             | JT FLOW   | S 6 mm            |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|--------------|--------------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage |              | ruction<br>s stage |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-I     | ife stage              |             | ery,                            |
| Parameters                                 |                  | A4 Transport | A5 Installation    | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Materials for Recycling<br>(MFR) [kg]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy Recovery<br>(MER) [kg] | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy<br>(EEE) [MJ]   | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

PARSOL 8 mm

|          |                                                                |                  |                         | E               | NVIRONMEN | NTAL IMPA         | CTS 8     | 3 mm              |                     |                              |                             |                                      |              |                        |             |                              |
|----------|----------------------------------------------------------------|------------------|-------------------------|-----------------|-----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|------------------------------|
|          |                                                                | Product<br>stage | Construct<br>process st |                 |           |                   | Use s     | stage             |                     |                              |                             |                                      | End-of-life  | e stage                |             | 'ery,                        |
|          | Parameters                                                     |                  | A4 Transport            | A5 Installation | B1 Use    | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recove<br>recycling |
| 3        | Climate Change [kg CO2 eq.]                                    | 1,91E+01         | 1,95E+00                | 0               | 0         | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,88E-02     | 0                      | 2,80E-01    | 0                            |
| (*)      | Climate Change (fossil) [kg CO2 eq.]                           | 1,82E+01         | 1,94E+00                | 0               | 0         | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,85E-02     | 0                      | 3,03E-01    | 0                            |
| 3        | Climate Change (biogenic) [kg CO2 eq.]                         | 9,53E-01         | 0                       | 0               | 0         | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                            |
| ()       | Climate Change (land use change) [kg<br>CO2 eq.]               | 7,17E-03         | 1,59E-02                | 0               | 0         | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,97E-04     | 0                      | 8,73E-04    | 0                            |
| $\odot$  | Ozone depletion [kg CFC-11 eq.]                                | 2,04E-09         | 2,36E-16                | 0               | 0         | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,89E-18     | 0                      | 1,12E-15    | 0                            |
| 65       | Acidification terrestrial and freshwater<br>[Mole of H+ eq.]   | 7,35E-02         | 8,33E-03                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,08E-04     | 0                      | 2,18E-03    | 0                            |
|          | Eutrophication freshwater [kg P eq.]                           | 3,23E-05         | 5,96E-06                | 0               | 0         | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,49E-07     | 0                      | 5,21E-07    | 0                            |
|          | Eutrophication marine [kg N eq.]                               | 1,43E-02         | 3,91E-03                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 9,77E-05     | 0                      | 5,60E-04    | 0                            |
|          | Eutrophication terrestrial [Mole of N eq.]                     | 1,98E-01         | 4,34E-02                | 0               | 0         | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,09E-03     | 0                      | 6,16E-03    | 0                            |
| B        | Photochemical ozone formation - human<br>health [kg NMVOC eq.] | 3,60E-02         | 1,05E-02                | 0               | 0         | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,63E-04     | 0                      | 1,70E-03    | 0                            |
| <b>G</b> | Resource use, mineral and metals<br>[kg Sb eq.]                | 1,51E-06         | 1,41E-07                | 0               | 0         | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,52E-09     | 0                      | 2,72E-08    | 0                            |
| <b>G</b> | Resource use, energy carriers [MJ]                             | 2,99E+02         | 2,61E+01                | 0               | 0         | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,53E-01     | 0                      | 3,98E+00    | 0                            |
|          | Water scarcity [m <sup>3</sup> world equiv.]                   | 1,20E+00         | 1,75E-02                | 0               | 0         | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,38E-04     | 0                      | 3,18E-02    | 0                            |

|           |                                                                                    |                  |                       |                 | F      | RESOURCE U        | SE 8 n    | าฑ                |                     |                              |                             |                                      |              |                        |             |                                 |
|-----------|------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|           |                                                                                    | Product<br>stage | Construction<br>stage |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-      | life stage             |             | ery,                            |
|           | Parameters                                                                         | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| <b>(*</b> | Use of renewable primary<br>energy (PERE) [MJ]                                     | 9,56E+00         | 1,47E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,67E-02     | 0                      | 5,21E-01    | 0                               |
| <b>(*</b> | Primary energy resources<br>used as raw materials<br>(PERM) [MJ]                   | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | otal use of renewable primary<br>nergy resources (PERT) [MJ]                       | 9,56E+00         | 1,47E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,67E-02     | 0                      | 5,21E-01    | 0                               |
|           | Use of non-renewable<br>primary energy (PENRE)<br>[MJ]                             | 2,99E+02         | 2,61E+01              | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,54E-01     | 0                      | 3,98E+00    | 0                               |
| 0         | Non-renewable primary<br>energy resources used as<br>raw materials (PENRM)<br>[MJ] | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | Total use of non-renewable<br>primary energy resources<br>(PENRT) [MJ]             | 2,99E+02         | 2,61E+01              | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,54E-01     | 0                      | 3,98E+00    | 0                               |
| 6         | Input of secondary material<br>(SM) [kg]                                           | 3,19E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of renewable secondary fuels (RSF) [MJ]                                        | 4,21E-21         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of non-renewable secondary fuels (NRSF) [MJ]                                   | 4,94E-20         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 0         | Use of net fresh water (FW)<br>[m3]                                                | 4,06E-02         | 1,70E-03              | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,25E-05     | 0                      | 1,00E-03    | 0                               |

|   |                                             |                  |                         |                 |        | WASTE CA          | TEGOR     | IES 8 mm          | ì                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 | ,      |                   |           | Use stage         |                     |                              |                             |                                      | End-of-lif   | e stage                |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| đ | Hazardous waste disposed<br>(HWD) [kg]      | 4,94E-07         | 1,22E-06                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,04E-08     | 0                      | 6,07E-08    | 0                               |
| Ø | Non-hazardous waste<br>disposed (NHWD) [kg] | 1,15E+00         | 4,00E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,00E-04     | 0                      | 2,00E+01    | 0                               |
| Ū | Radioactive waste disposed<br>(RWD) [kg]    | 1,65E-02         | 3,24E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 8,09E-07     | 0                      | 4,52E-05    | 0                               |

|                                            |                  |              |                    |        | OUTPL             | JT FLOW   | S 8 mm            |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|--------------|--------------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage |              | ruction<br>s stage | 1      |                   |           | Use stage         |                     |                              |                             |                                      | End-of-l     | ife stage              |             | ery,                            |
| Parameters                                 |                  | A4 Transport | A5 Installation    | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Materials for Recycling<br>(MFR) [kg]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy Recovery<br>(MER) [kg] | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy<br>(EEE) [MJ]   | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

### PARSOL 10 mm

|            |                                                                |                  |                         | E١              | IVIRONMEN | TAL IMPA          | CTS 10    | 0 mm              |                     |                              |                             |                                      |              |                        |             |                                 |
|------------|----------------------------------------------------------------|------------------|-------------------------|-----------------|-----------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|            |                                                                | Product<br>stage | Construct<br>process st |                 |           |                   | Use s     | stage             |                     |                              |                             |                                      | End-of-life  | e stage                |             | ery,                            |
|            | Parameters                                                     |                  | A4 Transport            | A5 Installation | B1 Use    | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| 3          | Climate Change [kg CO2 eq.]                                    | 2,39E+01         | 2,44E+00                | 0               | 0         | 0,095             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,10E-02     | 0                      | 3,50E-01    | 0                               |
| ٣          | Climate Change (fossil) [kg CO2 eq.]                           | 2,27E+01         | 2,42E+00                | 0               | 0         | 0,081             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 6,06E-02     | 0                      | 3,79E-01    | 0                               |
| ۳          | Climate Change (biogenic) [kg CO2 eq.]                         | 1,19E+00         | 0                       | 0               | 0         | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 3          | Climate Change (land use change) [kg<br>CO2 eq.]               | 8,96E-03         | 1,99E-02                | 0               | 0         | 0,073             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,96E-04     | 0                      | 1,09E-03    | 0                               |
| $\bigcirc$ | Ozone depletion [kg CFC-11 eq.]                                | 2,55E-09         | 2,95E-16                | 0               | 0         | 4E-09             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 7,37E-18     | 0                      | 1,41E-15    | 0                               |
| 3          | Acidification terrestrial and freshwater<br>[Mole of H+ eq.]   | 9,19E-02         | 1,04E-02                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 2,60E-04     | 0                      | 2,72E-03    | 0                               |
|            | Eutrophication freshwater [kg P eq.]                           | 4,04E-05         | 7,45E-06                | 0               | 0         | 3E-05             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,86E-07     | 0                      | 6,51E-07    | 0                               |
|            | Eutrophication marine [kg N eq.]                               | 1,79E-02         | 4,88E-03                | 0               | 0         | 5E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,22E-04     | 0                      | 7,00E-04    | 0                               |
|            | Eutrophication terrestrial [Mole of N eq.]                     | 2,48E-01         | 5,43E-02                | 0               | 0         | 0,001             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,36E-03     | 0                      | 7,69E-03    | 0                               |
| 8          | Photochemical ozone formation - human<br>health [kg NMVOC eq.] | 4,50E-02         | 1,31E-02                | 0               | 0         | 3E-04             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,28E-04     | 0                      | 2,12E-03    | 0                               |
| <b>G</b>   | Resource use, mineral and metals<br>[kg Sb eq.]                | 1,89E-06         | 1,76E-07                | 0               | 0         | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,39E-09     | 0                      | 3,40E-08    | 0                               |
| <b>G</b>   | Resource use, energy carriers [MJ]                             | 3,74E+02         | 3,26E+01                | 0               | 0         | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 8,16E-01     | 0                      | 4,97E+00    | 0                               |
|            | Water scarcity [m <sup>3</sup> world equiv.]                   | 1,50E+00         | 2,19E-02                | 0               | 0         | 0,327             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,48E-04     | 0                      | 3,97E-02    | 0                               |

SAINT-GOBAIN - EPD verified - PARSOL® - Page 27

|           |                                                                                    |                  |                       |                 | R      | ESOURCE US        | SE 10 i   | nm                |                     |                              |                             |                                      |              |                        |             |                                 |
|-----------|------------------------------------------------------------------------------------|------------------|-----------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|           |                                                                                    | Product<br>stage | Construction<br>stage |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-life  | e stage                |             | ∋ry,                            |
|           | Parameters                                                                         | A1 / A2 / A3     | A4 Transport          | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| <b>(*</b> | Use of renewable primary<br>energy (PERE) [MJ]                                     | 1,19E+01         | 1,83E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,59E-02     | 0                      | 6,51E-01    | 0                               |
| 8         | Primary energy resources<br>used as raw materials<br>(PERM) [MJ]                   | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | otal use of renewable primary<br>nergy resources (PERT) [MJ]                       | 1,19E+01         | 1,83E+00              | 0               | 0      | 0,769             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 4,59E-02     | 0                      | 6,51E-01    | 0                               |
|           | Use of non-renewable<br>primary energy (PENRE)<br>[MJ]                             | 3,74E+02         | 3,27E+01              | 0               | 0      | 1,38              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 8,17E-01     | 0                      | 4,98E+00    | 0                               |
| 0         | Non-renewable primary<br>energy resources used as<br>raw materials (PENRM)<br>[MJ] | 0,00E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
|           | Total use of non-renewable<br>primary energy resources<br>(PENRT) [MJ]             | 3,74E+02         | 3,27E+01              | 0               | 0      | 1,48              | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 8,17E-01     | 0                      | 4,98E+00    | 0                               |
| 6         | Input of secondary material<br>(SM) [kg]                                           | 3,98E+00         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 5         | Use of renewable secondary fuels (RSF) [MJ]                                        | 5,26E-21         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| <b>S</b>  | Use of non-renewable secondary fuels (NRSF) [MJ]                                   | 6,18E-20         | 0                     | 0               | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| 0         | Use of net fresh water (FW)<br>[m3]                                                | 5,07E-02         | 2,12E-03              | 0               | 0      | 0,008             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 5,31E-05     | 0                      | 1,25E-03    | 0                               |

|   |                                             |                  |                         |                 | V      | VASTE CA          | TEGOR     | ES 10 mr          | n                   |                              |                             |                                      |              |                        |             |                                 |
|---|---------------------------------------------|------------------|-------------------------|-----------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|   |                                             | Product<br>stage | Construct<br>process st |                 |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-I     | ife stage              |             | ery,                            |
|   | Parameters                                  |                  | A4 Transport            | A5 Installation | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| ۵ | Hazardous waste disposed<br>(HWD) [kg]      | 6,18E-07         | 1,52E-06                | 0               | 0      | 8E-11             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 3,80E-08     | 0                      | 7,59E-08    | 0                               |
| Ø | Non-hazardous waste<br>disposed (NHWD) [kg] | 1,43E+00         | 5,00E-03                | 0               | 0      | 0,006             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,25E-04     | 0                      | 2,50E+01    | 0                               |
| Ż | Radioactive waste disposed<br>(RWD) [kg]    | 2,07E-02         | 4,04E-05                | 0               | 0      | 3E-06             | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 1,01E-06     | 0                      | 5,65E-05    | 0                               |

| OUTPUT FLOWS 10 mm                         |                  |              |                    |        |                   |           |                   |                     |                              |                             |                                      |              |                        |             |                                 |
|--------------------------------------------|------------------|--------------|--------------------|--------|-------------------|-----------|-------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|-------------|---------------------------------|
|                                            | Product<br>stage |              | ruction<br>s stage |        |                   |           | Use stage         |                     |                              |                             |                                      | End-of-l     | ife stage              |             | êry,                            |
| Parameters                                 |                  | A4 Transport | A5 Installation    | B1 Use | B2<br>Maintenance | B3 Repair | B4<br>Replacement | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal | D Reuse, recovery,<br>recycling |
| Components for re-use<br>(CRU) [kg]        | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Materials for Recycling<br>(MFR) [kg]      | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Material for Energy Recovery<br>(MER) [kg] | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |
| Exported electrical energy<br>(EEE) [MJ]   | 0                | 0            | 0                  | 0      | 0                 | 0         | 0                 | 0                   | 0                            | 0                           | 0                                    | 0            | 0                      | 0           | 0                               |

### Information on biogenic carbon content

| Results per fund                     | ctional or declared un | it       |
|--------------------------------------|------------------------|----------|
| BIOGENIC CARBON CONTENT              | Unit                   | QUANTITY |
| Biogenic carbon content in product   | kg C                   | 0        |
| Biogenic carbon content in packaging | kg C                   | 0        |

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO<sub>2</sub>.

There is no biogenic carbon in glass product. Every thickness considered in this EPD have the same value to biogenic carbon 0 kg C. Moreover, there is no packaging considered for glass products.

### LCA results interpretation for PARSOL® 4 mm



The following figure refers to a functional unit 1 m<sup>2</sup> of flat glass product.

#### Global Warming Potential (Climate Change) (GWP)

When analyzing the above figure for GWP, it can clearly be seen that the majority of contribution to this environmental impact is from the production modules (A1 - A3). This is primarily because the sources of greenhouse gas emissions are predominant in this part of the life cycle. CO<sub>2</sub> is generated upstream from the production of electricity and is also released on site by the combustion of natural gas. Production of one of raw material will generate the second highest percentage of greenhouse gas emissions. We can see that other sections of the life cycle also contribute to the GWP; however, the production modules contribute to over 90% of the contribution.

#### Non-renewable resources consumptions

We can see that the consumption of non – renewable resources is once more found to have the highest value in the production modules. This is because a large quantity of natural gas is consumed within the factory. The contribution to this impact from the other modules is very small and primarily due to the non – renewable resources consumed during transportation.

#### **Energy Consumptions**

As we can see, modules A1 - A3 have the highest contribution to total energy consumption. Energy in the form of electricity and natural gas is consumed in a vast quantity during the manufacture of glass so we would expect the production modules to contribute the most to this impact category.

#### Water Consumption

As we don't use water in any of the other modules (A4 - A5, C1 - C4), we can see that there is no contribution to water consumption. For the production phase, water is used within the manufacturing facility and therefore we see the highest contribution here. However, we recycle a lot of the water on site so the contribution is still relatively low. We also use water during the use phase to cleaning the product.

#### **Waste Production**

Waste production does not follow the same trend as the above environmental impacts. The largest contributor is the end of life module. This is because 100% of the product is sent to landfill. However, there is still an impact associated with the production module since we do generate waste on site.

### Health characteristics

Concerning the indoor air quality, clear flat glass is an inert material that doesn't release any inorganic & organic compounds, in particular no VOC (volatile organic compounds).

### Additional Environmental Information

### Saint-Gobain's environmental policy

Saint-Gobain's environmental vision is to ensure the sustainable development of its Activities, while preserving the environment from the impacts of its processes and services throughout their life cycle. The Group thus seeks to ensure the preservation of resources, meet the expectations of its relevant stakeholders, and offer its customers the highest added value with the lowest environmental impact.

The Group has set two long-term objectives: zero environmental accidents and a minimum impact of its activities on the environment. Short and medium-term goals are set to address these two ambitions. They concern five environmental areas identified by the Group: raw materials and waste; energy, atmospheric emissions and climate; water; biodiversity; and environmental accidents and nuisance.

### Our products' contribution to Sustainable Buildings

Saint-Gobain encourages sustainable construction and develops innovative solutions for new and renovated buildings that are energy efficient, comfortable, healthy and esthetically superior, while at the same time protecting natural resources.

The following information might be of help for green building certification programs:

#### RECYCLED CONTENT

(Required for LEED v4 Building product disclosure and optimization - sourcing of raw materials)

Recycled content: proportion, by mass, of recycled material in a product or packaging. Only pre-consumer and post-consumer materials shall be considered as recycled content.

Post-consumer material: material generated by households or commercial, industrial and institutional facilities in their role as end-users of the product which can no longer be used for its intended purpose. In practice, in the case of flat glass, all material coming from glass recycling collection schemes falls under this category, i.e. glass waste from end-of-life vehicles, construction and demolition waste, etc.

Pre-consumer material: material diverted from the waste stream during a manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.

In the case of flat glass, this waste originates from the processing or re-processing of glass that takes place before the final product reaches the consumer market. Pre-consumer waste flat glass is made of cut-offs, losses during laminating, bending and other processing, including the manufacture of insulating glass units or automotive windscreens.

Cullet generated in the furnace plant and which is reintroduced into the furnace cannot be considered as preconsumer recycled content, since there was never an intent to discard it and therefore it would never have entered the solid waste stream.

| Pre-     |      |
|----------|------|
| consumer | ~13% |
| cullet   |      |
| Post-    |      |
| consumer | < 1% |
| cullet   |      |

In the future, Saint-Gobain Glass intends to continue the increase of recycled material in its products, especially when recycling building post-consumer cullet glass dismantling and recycling networks will be available in every country.

#### **RESPONSIBLE SOURCING**

(Required for BREEAM International new construction 2013 – MAT 03 Responsible sourcing)

All Saint-Gobain Glass Industry sites with a glassmaking furnace, are ISO 14001 certified. The Saint-Gobain Glass Industry site from the UK (Eggborough) has a BES 6001 certification, with a Very Good score.

All internal Saint-Gobain Glass quarries are certified ISO 14001 like, for example, SAINT-GOBAIN SAMIN (sand) in France. Many Saint-Gobain Glass raw material suppliers are certified ISO 14001. Our policy consists in encouraging the sourcing of raw materials extracted or made in sites certified ISO 14001 (or the equivalent).

For any other question / document / certification, please contact our local sales teams.

# Annex 1: Environmental impacts according to EN 15804:2012 + A1

The following tables presents results of flat glass from 2 mm to 19 mm according to EN 15804 +A1.

### PARSOL 3 mm

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENVIRONMENTAL IMPACTS 3 mm  Product Stage Use stage End-of-life stage End-of-life stage |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |             |                               |                     |                              |                             |                                      |               |                        |                |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------------|-------------|-------------------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|---------------|------------------------|----------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Product<br>stage                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |             | Use stage                     |                     |                              |                             |                                      | End-of-l      | ife stage              |                | ,<br>Z                          |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1 / A2 / A3                                                                            | A4 Transport                                                                                                                                                                                                                                                                                                                                                | A5 Installation | B1 Use       | B2<br>Maintenance            | B3 Repair   | B4<br>Replacement             | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport  | C3 Waste<br>processing | C4 Disposal    | D Reuse, recovery,<br>recycling |
| Constant Con | 6,84E+00                                                                                | 7,17E-01                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 7,92E-02                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,79E-02      | 0                      | 1,12E-01       | 0                               |
| (GWP) - kg CO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The glo                                                                                 | bal warmin                                                                                                                                                                                                                                                                                                                                                  | g potential     | of a gas ref |                              |             | ution to glol<br>as, carbon d | -                   |                              |                             |                                      | ne unit of th | at gas relat           | ive to one u   | nit of the                      |
| Ozone Depletion (ODP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,82E-10                                                                                | 1,18E-16                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 3,94E-09                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 2,95E-18      | 0                      | 5,62E-16       | 0                               |
| kg CFC 11 equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdo<br>certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalyt<br>destrov ozone molecules. |                 |              |                              |             |                               |                     |                              |                             |                                      |               |                        |                |                                 |
| Acidification potential (AP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,11E-02                                                                                | 2,17E-03                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 3,82E-04                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 5,42E-05      | 0                      | 6,55E-04       | 0                               |
| kg SO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acid dep                                                                                | oositions ha                                                                                                                                                                                                                                                                                                                                                | ve negative     | •            | natural eco<br>riculture and | •           |                               |                     |                              |                             |                                      |               | missions of            | f acidifying s | ubstances                       |
| Eutrophication potential (EP)<br>kg ( $PO_4$ ) <sup>3-</sup> equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,81E-03                                                                                | 5,27E-04                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 6,51E-04                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,32E-05      | 0                      | 7,38E-05       | 0                               |
| - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                             | Excess          | ive enrichn  | nent of wate                 | ers and con | tinental surf                 | faces with n        | utrients, ar                 | nd the assoc                | iated adve                           | rse biologica | l effects              |                |                                 |
| Photochemical ozone creation potentiel (POCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,33E-03                                                                                | 7,98E-05                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 2,59E-05                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,99E-06      | 0                      | 5,28E-05       | 0                               |
| kg Ethene equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chem                                                                                    | ical reaction                                                                                                                                                                                                                                                                                                                                               | is brought a    | bout by the  | e light energ                | •           |                               |                     | -                            | -                           | arbons in tl                         | ne presence   | of sunlight            | to form ozo    | ne is an                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |             | example of a                  | a photocher         | nical reacti                 | on.                         |                                      |               |                        |                |                                 |
| Abiotic depletion potential for<br>non-fossil resources (ADP-<br>elements) - <i>kg Sb equiv/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5,19E-05                                                                                | 5,96E-08                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 2,56E-06                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,49E-09      | 0                      | 3,94E-08       | 0                               |
| Abiotic depletion potential for<br>fossil resources (ADP-fossil<br>fuels) - <i>MJ/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,66E+01                                                                                | 9,77E+00                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 1,29E+00                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 2,44E-01      | 0                      | 1,45E+00       | 0                               |
| ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                             |                 | Consump      | tion of non-                 | renewable   | resources,                    | thereby low         | ering their                  | availability                | for future g                         | enerations.   |                        |                |                                 |

### PARSOL 4 mm

|             |                                                                                         | ENVIRONMENTAL IMPACTS 4 mm         Product stage       Construction process stage       End-of-life stage |                                                                                                                                                                                                                                                                                                                                                  |                 |              |                              |             |                               |                     |                              |                             |                                      |              |                        |                              |                                 |  |  |
|-------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------------|-------------|-------------------------------|---------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|------------------------------|---------------------------------|--|--|
|             |                                                                                         | Product<br>stage                                                                                          |                                                                                                                                                                                                                                                                                                                                                  |                 |              |                              |             | Use stage                     |                     |                              |                             |                                      | End-of-li    | fe stage               |                              | , ک <sup>او</sup>               |  |  |
|             | Parameters                                                                              |                                                                                                           | A4 Transport                                                                                                                                                                                                                                                                                                                                     | A5 Installation | B1 Use       | B2<br>Maintenance            | B3 Repair   | B4<br>Replacement             | B5<br>Refurbishment | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal                  | D Reuse, recovery,<br>recycling |  |  |
|             | al Warming Potential                                                                    | 9,12E+00                                                                                                  | 9,56E-01                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 7,92E-02                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 2,39E-02     | 0                      | 1,49E-01                     | 0                               |  |  |
| (GWF        | P) - kg CO2 equiv/FU                                                                    | The glo                                                                                                   | bal warmin                                                                                                                                                                                                                                                                                                                                       | g potential     | of a gas ref |                              |             | ution to glol<br>as, carbon d |                     |                              |                             |                                      | e unit of th | at gas relat           | ive to one u                 | nit of the                      |  |  |
|             | ne Depletion (ODP)                                                                      | 9,09E-10                                                                                                  | 1,57E-16                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 3,94E-09                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 3,93E-18     | 0                      | 7,49E-16                     | 0                               |  |  |
|             | FC 11 equiv/FU                                                                          |                                                                                                           | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the break certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catal destroy ozone molecules |                 |              |                              |             |                               |                     |                              |                             |                                      |              |                        |                              |                                 |  |  |
|             | ification potential (AP)                                                                | 2,81E-02                                                                                                  | 2,89E-03                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 3,82E-04                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 7,22E-05     | 0                      | 8,74E-04                     | 0                               |  |  |
| kg SC       | O₂ equiv/FU                                                                             | Acid dep                                                                                                  | ositions ha                                                                                                                                                                                                                                                                                                                                      | ve negative     |              | natural eco<br>riculture and |             |                               |                     |                              |                             |                                      |              | missions of            | ons of acidifying substances |                                 |  |  |
|             | ophication potential (EP)<br>20₄) <sup>3-</sup> equiv/FU                                | 3,74E-03                                                                                                  | 7,03E-04                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 6,51E-04                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,76E-05     | 0                      | 9,84E-05                     | 0                               |  |  |
|             |                                                                                         |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  | Excess          | ive enrichm  | nent of wate                 | ers and con | tinental sur                  | faces with n        | utrients, ar                 | d the assoc                 | iated adver                          | se biologica | l effects              |                              |                                 |  |  |
|             | ochemical ozone<br>ation potentiel (POCP)                                               | 1,77E-03                                                                                                  | 1,06E-04                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 2,59E-05                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 2,66E-06     | 0                      | 7,04E-05                     | 0                               |  |  |
| kg Etl      | thene equiv/FU                                                                          | Chemi                                                                                                     | cal reaction                                                                                                                                                                                                                                                                                                                                     | s brought a     | bout by the  | e light energ                | •           | •                             |                     |                              | •                           | arbons in th                         | ne presence  | of sunlight            | to form ozo                  | ne is an                        |  |  |
|             |                                                                                         |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                 |              |                              |             | example of a                  | a photocher         | nical reaction               | on.                         |                                      |              |                        |                              |                                 |  |  |
| 🛛 🏹 non-f   | tic depletion potential for<br>fossil resources (ADP-<br>nents) - <i>kg Sb equiv/FU</i> | 6,93E-05                                                                                                  | 7,95E-08                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 2,56E-06                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 1,99E-09     | 0                      | 5,25E-08                     | 0                               |  |  |
| 🛛 🄇 🧞 fossi | tic depletion potential for<br>il resources (ADP-fossil<br>s) - <i>MJ/FU</i>            | 1,29E+02                                                                                                  | 1,30E+01                                                                                                                                                                                                                                                                                                                                         | 0,00E+00        | 0            | 1,29E+00                     | 0           | 0                             | 0                   | 0                            | 0                           | 0                                    | 3,26E-01     | 0                      | 1,93E+00                     | 0                               |  |  |
|             |                                                                                         |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                 | Consump      | tion of non-                 | renewable   | resources,                    | thereby low         | vering their                 | availability                | for future g                         | generations. |                        |                              |                                 |  |  |

### PARSOL 5 mm

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENVIRONMENTAL IMPACTS 5 mm         Product stage       End-of-life stage       End-of-life stage       Product Stage |                                                                                                                                                                                                                                                                                                                                                            |                 |              |                                |             |                   |                             |                              |                             |                                      |              |                        |              |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------------------------|-------------|-------------------|-----------------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|--------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                 |              |                                |             | Use stage         |                             |                              |                             |                                      | End-of-l     | ife stage              |              | Ś                               |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1/A2/A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A4 Transport                                                                                                                                                                                                                                                                                                                                               | A5 Installation | B1 Use       | B2<br>Maintenance              | B3 Repair   | B4<br>Replacement | B5<br>Refurbishment         | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal  | D Reuse, recovery,<br>recycling |
| Constant Con | 1,14E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,20E+00                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 7,92E-02                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 2,99E-02     | 0                      | 1,86E-01     | 0                               |
| (GWP) - kg CO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The glo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bal warmin                                                                                                                                                                                                                                                                                                                                                 | g potential     | of a gas ref |                                |             | -                 | bal warming<br>ioxide, whic |                              |                             |                                      | e unit of th | at gas relat           | ive to one u | nit of the                      |
| Ozone Depletion (ODP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,14E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,96E-16                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 3,94E-09                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 4,91E-18     | 0                      | 9,37E-16     | 0                               |
| kg CFC 11 equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdo<br>certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalyt<br>destrov ozone molecules |                 |              |                                |             |                   |                             |                              |                             |                                      |              |                        |              |                                 |
| Acidification potential (AP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,51E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,61E-03                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 3,82E-04                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 9,03E-05     | 0                      | 1,09E-03     | 0                               |
| kg SO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acid dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oositions ha                                                                                                                                                                                                                                                                                                                                               | ve negative     | -            | n natural ecc<br>riculture and | •           |                   |                             |                              |                             |                                      |              | missions of            | acidifying s | ubstances                       |
| Eutrophication potential (EP) $kg (PO_4)^{3-}$ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,68E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,79E-04                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 6,51E-04                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 2,20E-05     | 0                      | 1,23E-04     | 0                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            | Excess          | ive enrichn  | nent of wate                   | ers and con | tinental sur      | faces with n                | utrients, ar                 | nd the asso                 | iated adver                          | se biologica | l effects              |              |                                 |
| Photochemical ozone creation potentiel (POCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,21E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,33E-04                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 2,59E-05                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 3,32E-06     | 0                      | 8,80E-05     | 0                               |
| kg Ethene equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ical reaction                                                                                                                                                                                                                                                                                                                                              | ns brought a    | bout by the  | e light energ                  | -           |                   | -                           |                              | -                           | arbons in th                         | ne presence  | of sunlight            | to form ozo  | one is an                       |
| Abiotic depletion potential for<br>non-fossil resources (ADP-<br>elements) - <i>kg Sb equiv/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,66E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,94E-08                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 2,56E-06                       | 0           | 0                 | o photocher                 | nical reacti<br>0            | on.<br>0                    | 0                                    | 2,48E-09     | 0                      | 6,57E-08     | 0                               |
| Abiotic depletion potential for<br>fossil resources (ADP-fossil<br>fuels) - <i>MJ/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,61E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,63E+01                                                                                                                                                                                                                                                                                                                                                   | 0,00E+00        | 0            | 1,29E+00                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 4,07E-01     | 0                      | 2,42E+00     | 0                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                            |                 | Consump      | tion of non-                   | renewable   | resources,        | thereby low                 | vering their                 | availability                | for future g                         | generations  |                        |              |                                 |

### PARSOL 6 mm

|                                                                                                    | ENVIRONMENTAL IMPACTS 6 mm         Product stage       Construction process stage       End-of-life stage |                                                                                                                                                                                                                                                                                                                                                               |                 |              |                                |             |                   |                             |                              |                             |                                      |               |                        |                       |                                 |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------------------------|-------------|-------------------|-----------------------------|------------------------------|-----------------------------|--------------------------------------|---------------|------------------------|-----------------------|---------------------------------|--|
|                                                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                               |                 |              |                                |             | Use stage         |                             |                              |                             |                                      | End-of-l      | ife stage              |                       | ary,                            |  |
| Parameters                                                                                         |                                                                                                           | A4 Transport                                                                                                                                                                                                                                                                                                                                                  | A5 Installation | B1 Use       | B2<br>Maintenance              | B3 Repair   | B4<br>Replacement | B5<br>Refurbishment         | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport  | C3 Waste<br>processing | C4 Disposal           | D Reuse, recovery,<br>recycling |  |
| Global Warming Potential                                                                           | 1,37E+01                                                                                                  | 1,43E+00                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 7,92E-02                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 3,59E-02      | 0                      | 2,23E-01              | 0                               |  |
| (GWP) - kg CO₂ equiv/FU                                                                            | The glo                                                                                                   | bal warmin                                                                                                                                                                                                                                                                                                                                                    | g potential     | of a gas ref |                                |             | -                 | bal warming<br>ioxide, whic |                              |                             |                                      | e unit of th  | at gas relat           | ive to one ur         | nit of the                      |  |
| Ozone Depletion (ODP)                                                                              | 1,36E-09                                                                                                  | 2,36E-16                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 3,94E-09                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 5,89E-18      | 0                      | 1,12E-15              | 0                               |  |
| kg CFC 11 equiv/FU                                                                                 |                                                                                                           | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdow<br>certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalytic<br>destrov ozone molecules |                 |              |                                |             |                   |                             |                              |                             |                                      |               |                        |                       |                                 |  |
| Acidification potential (AP)                                                                       | 4,21E-02                                                                                                  | 4,33E-03                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 3,82E-04                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 1,08E-04      | 0                      | 1,31E-03              | 0                               |  |
| kg SO₂ equiv/FU                                                                                    | Acid dep                                                                                                  | oositions ha                                                                                                                                                                                                                                                                                                                                                  | ve negative     | -            | n natural eco<br>riculture and | -           |                   |                             |                              | -                           |                                      |               | missions of            | acidifying substances |                                 |  |
| Eutrophication potential (EP) $kg (PO_4)^{3-}$ equiv/FU                                            | 5,62E-03                                                                                                  | 1,05E-03                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 6,51E-04                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 2,64E-05      | 0                      | 1,48E-04              | 0                               |  |
|                                                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                               | Excess          | ive enrichn  | nent of wate                   | ers and con | tinental sur      | faces with n                | utrients, an                 | d the assoc                 | iated adver                          | rse biologica | l effects              |                       |                                 |  |
| Photochemical ozone creation potentiel (POCP)                                                      | 2,65E-03                                                                                                  | 1,60E-04                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 2,59E-05                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 3,99E-06      | 0                      | 1,06E-04              | 0                               |  |
| kg Ethene equiv/FU                                                                                 | Chem                                                                                                      | ical reaction                                                                                                                                                                                                                                                                                                                                                 | ns brought a    | bout by th   | e light energ                  |             |                   |                             | -                            | •                           | arbons in th                         | ne presence   | of sunlight            | to form ozo           | ne is an                        |  |
| Abiotic depletion potential for<br>non-fossil resources (ADP-<br>elements) - <i>kg Sb equiv/FU</i> | 1,04E-04                                                                                                  | 1,19E-07                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 2,56E-06                       | 0           | 0                 | a photocher<br>0            | 0                            | o <b>n.</b><br>0            | 0                                    | 2,98E-09      | 0                      | 7,88E-08              | 0                               |  |
| Abiotic depletion potential for<br>fossil resources (ADP-fossil<br>fuels) - <i>MJ/FU</i>           | 1,93E+02                                                                                                  | 1,95E+01                                                                                                                                                                                                                                                                                                                                                      | 0,00E+00        | 0            | 1,29E+00                       | 0           | 0                 | 0                           | 0                            | 0                           | 0                                    | 4,89E-01      | 0                      | 2,90E+00              | 0                               |  |
|                                                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                               |                 | Consump      | tion of non                    | -renewable  | resources,        | thereby low                 | vering their                 | availability                | for future g                         | generations   |                        |                       |                                 |  |

SAINT-GOBAIN - EPD verified - PARSOL® - Page 39

### PARSOL 8 mm

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENVIRONMENTAL IMPACTS 8 mm           Product stage         Construction process stage         End-of-life stage         > |                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                |             |                   |                              |                              |                             |                                      |              |                        |              |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------------------------|-------------|-------------------|------------------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|--------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Product<br>stage                                                                                                          |                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                |             | Use stage         |                              |                              |                             |                                      | End-of-l     | ife stage              |              | Ŕ                               |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A1/A2/A3                                                                                                                  | A4 Transport                                                                                                                                                                                                                                                                                                                                                 | A5 Installation | B1 Use       | B2<br>Maintenance              | B3 Repair   | B4<br>Replacement | B5<br>Refurbishment          | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal  | D Reuse, recovery,<br>recycling |
| Constant Con | 1,82E+01                                                                                                                  | 1,91E+00                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 7,92E-02                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 4,78E-02     | 0                      | 2,98E-01     | 0                               |
| (GWP) - kg CO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The glo                                                                                                                   | bal warmin                                                                                                                                                                                                                                                                                                                                                   | g potential     | of a gas ref |                                |             | -                 | bal warminរូ<br>ioxide, whic |                              |                             |                                      | e unit of th | at gas relat           | ive to one u | nit of the                      |
| Ozone Depletion (ODP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,82E-09                                                                                                                  | 3,14E-16                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 3,94E-09                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 7,86E-18     | 0                      | 1,50E-15     | 0                               |
| kg CFC 11 equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                           | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdo<br>certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalyti<br>destrov ozone molecules. |                 |              |                                |             |                   |                              |                              |                             |                                      |              |                        |              |                                 |
| Acidification potential (AP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,61E-02                                                                                                                  | 5,78E-03                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 3,82E-04                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 1,44E-04     | 0                      | 1,75E-03     | 0                               |
| kg SO₂ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acid dep                                                                                                                  | oositions ha                                                                                                                                                                                                                                                                                                                                                 | ve negative     | •            | n natural eco<br>riculture and | •           |                   |                              |                              |                             |                                      |              | missions of            | acidifying s | ubstances                       |
| Eutrophication potential (EP) $kg (PO_4)^{3-}$ equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,49E-03                                                                                                                  | 1,41E-03                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 6,51E-04                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 3,52E-05     | 0                      | 1,97E-04     | 0                               |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              | Excess          | ive enrichn  | nent of wate                   | ers and con | tinental sur      | faces with n                 | utrients, ar                 | nd the asso                 | iated adver                          | se biologica | l effects              |              |                                 |
| Photochemical ozone<br>creation potentiel (POCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,54E-03                                                                                                                  | 2,13E-04                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 2,59E-05                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 5,32E-06     | 0                      | 1,41E-04     | 0                               |
| kg Ethene equiv/FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemi                                                                                                                     | ical reaction                                                                                                                                                                                                                                                                                                                                                | is brought a    | bout by th   | e light energ                  | -           |                   |                              | -                            | -                           | arbons in th                         | ne presence  | of sunlight            | to form ozo  | one is an                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |                 |              |                                |             | example of a      | a photocher                  | nical reacti                 | on.                         |                                      |              |                        |              |                                 |
| Abiotic depletion potential for<br>non-fossil resources (ADP-<br>elements) - <i>kg Sb equiv/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,39E-04                                                                                                                  | 1,59E-07                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 2,56E-06                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 3,97E-09     | 0                      | 1,05E-07     | 0                               |
| Abiotic depletion potential for<br>fossil resources (ADP-fossil<br>fuels) - <i>MJ/FU</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,57E+02                                                                                                                  | 2,61E+01                                                                                                                                                                                                                                                                                                                                                     | 0,00E+00        | 0            | 1,29E+00                       | 0           | 0                 | 0                            | 0                            | 0                           | 0                                    | 6,51E-01     | 0                      | 3,87E+00     | 0                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |                 | Consump      | otion of non-                  | renewable   | resources,        | thereby low                  | vering their                 | availability                | for future g                         | generations  |                        |              |                                 |

SAINT-GOBAIN - EPD verified - PARSOL® - Page 40

### PARSOL 10 mm

|                                                                                                    | ENVIRONMENTAL IMPACTS 10 mm  Product stage Use stage End-of-life stage |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |            |                   |                              |                              |                             |                                      |              |                        |              |                                 |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------------------|------------|-------------------|------------------------------|------------------------------|-----------------------------|--------------------------------------|--------------|------------------------|--------------|---------------------------------|
|                                                                                                    | Product<br>stage                                                       |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |            | Use stage         |                              |                              |                             |                                      | End-of-li    | ife stage              |              | ŗŊ,                             |
| Parameters                                                                                         | A1 / A2 / A3                                                           | A4 Transport                                                                                                                                                                                                                                                                                                                                                | A5 Installation | B1 Use       | B2<br>Maintenance            | B3 Repair  | B4<br>Replacement | B5<br>Refurbishment          | B6 Operational<br>energy use | B7 Operational<br>water use | C1<br>Deconstruction<br>/ demolition | C2 Transport | C3 Waste<br>processing | C4 Disposal  | D Reuse, recovery,<br>recycling |
| Global Warming Potential                                                                           | 2,28E+01                                                               | 2,39E+00                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 7,92E-02                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 5,98E-02     | 0                      | 3,72E-01     | 0                               |
| (GWP) - kg CO₂ equiv/FU                                                                            | The glo                                                                | bal warmin                                                                                                                                                                                                                                                                                                                                                  | g potential     | of a gas ref |                              |            | -                 | bal warming<br>lioxide, whic |                              |                             |                                      | e unit of th | at gas relat           | ive to one u | nit of the                      |
| Ozone Depletion (ODP)                                                                              | 2,27E-09                                                               | 3,93E-16                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 3,94E-09                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 9,82E-18     | 0                      | 1,87E-15     | 0                               |
| kg CFC 11 equiv/FU                                                                                 |                                                                        | Destruction of the stratospheric ozone layer which shields the earth from ultraviolet radiation harmful to life, This destruction of ozone is caused by the breakdo<br>certain chlorine and/or bromine containing compounds (chlorofluorocarbons or halons), which break down when they reach the stratosphere and then catalyt<br>destrov ozone molecules. |                 |              |                              |            |                   |                              |                              |                             |                                      |              |                        |              |                                 |
| Acidification potential (AP)                                                                       | 7,02E-02                                                               | 7,22E-03                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 3,82E-04                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 1,81E-04     | 0                      | 2,18E-03     | 0                               |
| kg SO₂ equiv/FU                                                                                    | Acid dep                                                               | oositions ha                                                                                                                                                                                                                                                                                                                                                | ve negative     | •            | natural eco<br>riculture and | -          |                   |                              |                              |                             |                                      |              | missions of            | acidifying s | ubstances                       |
| Eutrophication potential (EP)                                                                      | 9,36E-03                                                               | 1,76E-03                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 6,51E-04                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 4,39E-05     | 0                      | 2,46E-04     | 0                               |
|                                                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                             | Excess          | ive enrichn  | nent of wate                 | rs and con | tinental sur      | faces with n                 | utrients, ar                 | nd the asso                 | iated adver                          | se biologica | l effects              |              |                                 |
| Photochemical ozone creation potentiel (POCP)                                                      | 4,42E-03                                                               | 2,66E-04                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 2,59E-05                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 6,65E-06     | 0                      | 1,76E-04     | 0                               |
| kg Ethene equiv/FU                                                                                 | Chem                                                                   | ical reactior                                                                                                                                                                                                                                                                                                                                               | is brought a    | bout by the  | e light energ                | -          |                   |                              | -                            | -                           | arbons in th                         | ne presence  | of sunlight            | to form ozo  | ne is an                        |
|                                                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                 |              |                              |            | example of        | a photocher                  | nical reaction               | on.                         |                                      |              |                        |              |                                 |
| Abiotic depletion potential for<br>non-fossil resources (ADP-<br>elements) - <i>kg Sb equiv/FU</i> | 1,73E-04                                                               | 1,99E-07                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 2,56E-06                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 4,97E-09     | 0                      | 1,31E-07     | 0                               |
| Abiotic depletion potential for<br>fossil resources (ADP-fossil<br>fuels) - <i>MJ/FU</i>           | 3,22E+02                                                               | 3,26E+01                                                                                                                                                                                                                                                                                                                                                    | 0,00E+00        | 0            | 1,29E+00                     | 0          | 0                 | 0                            | 0                            | 0                           | 0                                    | 8,14E-01     | 0                      | 4,83E+00     | 0                               |
|                                                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                 | Consump      | tion of non-                 | renewable  | resources,        | thereby low                  | vering their                 | availability                | for future g                         | generations  |                        |              |                                 |

### Bibliography

- EN 15804:2012+A1:2013: Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- EN 15804:2019+A2 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- ISO 21930: 2017 Sustainability in building construction Environmental declaration of building products
- ISO 14040:2006: Environmental Management-Life Cycle Assessment-Principles and framework.
- ISO 14044:2006: Environmental Management-Life Cycle Assessment-Requirements and guidelines.
- ISO 14025:2006: Environmental labels and declarations-Type III Environmental Declarations-Principles and procedures.
- PCR 2019:14 Construction products (EN 15804:2012: A2) version 1.1) and c-PCR-009 Flat glass products (EN 17074)
- General Program Instruction of the International EPD® System, version 2.5
- Saint-Gobain Environmental Product Declaration Methodological Guide for Construction Products, Version 3.0.1 (2013)
- European Chemical Agency, Candidate List of substances of very high concern for Authorization. http://echa.europa.eu/chem\_data/authorisation\_process/candidate\_list\_table\_en.asp
- LCA report, Information for the Environmental Product Declaration of insulation products.

### Differences versus previous versions

Global update from EN 15804+A1 to EN 15804+A2 including all new requirement, environmental impact indicator, with a more recent data collection and based on a full cycle compare to cage to gate before.